Acta Crystallographica Section E

Structure Reports

Online

Di- μ_{2}-acetato-bis $\left[\mu_{2}-N, N^{\prime}\right.$-bis(salicylidene)-butane-1,4-diaminato]trimanganese(II)

ISSN 1600-5368

Ji-Long Ma, ${ }^{\text {a }}$ Zhong-Lu You ${ }^{\text {b }}$ and Hai-Liang Zhu ${ }^{\text {c* }}$

${ }^{\text {a }}$ Department of Chemistry, Fuyang Normal College, Fuyang 236041, People's Republic of China, ${ }^{\mathbf{b}}$ Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China, and ${ }^{\text {c Institute of Functional Biomole- }}$ cules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail:
hailiang_zhu@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.041$
$w R$ factor $=0.088$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

The title trinuclear compound, $\left[\mathrm{Mn}_{3}\left(\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2^{-}}\right.$ $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$], with a linear array of metal atoms, is isostructural with the cobalt(II) complex reported recently by You, Zhu \& Liu [(2004). Acta Cryst. E60, m1900-m1902]. The central Mn ${ }^{\text {II }}$ ion, which is located on an inversion center, has a distorted octahedral geometry. The terminal $\mathrm{Mn}^{\mathrm{II}}$ ion has an irregular square-pyramidal geometry. The $\mathrm{Mn} \cdots \mathrm{Mn}$ separation is 3.128 (2) A.

Comment

Recently, we have reported some trinuclear Schiff base complexes (You et al., 2004a; You \& Zhu, 2004). As an extension of our work on these complexes, the title trinuclear manganese(II) compound, (I), is reported here.

(I)

Compound (I) is a trinuclear manganese(II) complex (Fig. 1), which is isostructural with the trinuclear cobalt(II) complex di- μ-acetato- $1: 2 \kappa^{2} O, O^{\prime} ; 2: 3 \kappa^{2} O, O^{\prime}$ bis $\left\{2,2^{\prime}\right.$-[1,4-butanediylbis(nitrilomethylidyne)]diphenolato\}$1: 2 \kappa^{6} O, N, N, O^{\prime}: O, O^{\prime} ; 2,3 \kappa^{6} O, O^{\prime}: O, N, N, O^{\prime}$-tricobalt(II), (II), which we have reported recently (You et al., 2004b). In (I), the bond lengths and angles (Table 1) are comparable to those in (II). The central $\mathrm{Mn}^{\mathrm{II}}$ ion, which is located on an inversion center, has a distorted octahedral geometry. The terminal $\mathrm{Mn}^{\mathrm{II}}$ ion has an irregular square-pyramidal geometry. The $\mathrm{Mn} \cdots \mathrm{Mn}$ separation is 3.128 (2) \AA.

In the crystal structure, there are no short contacts between molecules (Fig. 2).

Experimental

1,4-Diaminobutane ($0.1 \mathrm{mmol}, \quad 8.6 \mathrm{mg}$) and salicylaldehyde $(0.2 \mathrm{mmol}, 24.4 \mathrm{mg})$ were dissolved in $\mathrm{MeOH}(3 \mathrm{ml})$. The mixture was stirred for 1 h to give a clear orange solution. To the above solution was added an MeOH solution (2 ml) of $\mathrm{Mn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
($0.2 \mathrm{mmol}, 41.8 \mathrm{mg}$), with stirring for 10 min . The mixture was transferred to a stainless steel bomb, which was sealed, heated at 423 K for 12 h and cooled gradually to room temperature. Brown block-shaped crystals were formed.

Crystal data

```
[Mn}(\mp@subsup{\textrm{M}}{3}{}(\mp@subsup{\textrm{C}}{18}{}\mp@subsup{\textrm{H}}{18}{}\mp@subsup{\textrm{N}}{2}{}\mp@subsup{\textrm{O}}{2}{}\mp@subsup{)}{2}{}(\mp@subsup{\textrm{C}}{2}{}\mp@subsup{\textrm{H}}{3}{}\mp@subsup{\textrm{O}}{2}{}\mp@subsup{)}{2}{}
Mr}=871.6
Monoclinic, P2 (1/c
a=9.190 (5) \AA
b=16.756 (9) \AA
c=12.690(7) A
\beta=95.126 (10)
V=1946.3(19) \AA \AA
Z=2
```

$D_{x}=1.487 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1726
reflections
$\theta=2.5-21.1^{\circ}$
$\mu=1.02 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, brown
$0.25 \times 0.18 \times 0.11 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.785, T_{\text {max }}=0.897$
10096 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.088$
$S=0.84$
3432 reflections
250 parameters

Figure 1
The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Atoms labeled with the suffix A are related by the symmetry operator $(1-x,-y, 1-z)$.

Figure 2
The crystal packing of (I), viewed along the a axis. H atoms have been omitted.

References

Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
You, Z.-L. \& Zhu, H.-L. (2004). Z. Anorg. Allg. Chem. 630, 2754-2760.

metal-organic papers

